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Abstract
A simple method for estimating the mass diffusion coefficient of a dilute binary liquid alloy that
sequentially uses experimental data for the static structure factor and isothermal susceptibility
of the solvent is presented, as well as another using the static structure factor alone and a
method using the isothermal susceptibility alone. A fourth method that simultaneously uses the
static structure factor and isothermal susceptibility is also noted. Of significance is the fact that
these methods do not require information about the interatomic potential. Stability with respect
to weights in the optimization process employed has been established and is reported, as well as
some indication of the upper limits on the applicable solute concentration. Comparisons are
made with results from a high quality capillary experiment for Pb 1 wt% Au liquid alloy
performed in microgravity, and with velocity autocorrelation estimates derived from molecular
dynamics simulation. The results suggest that the capillary experiments are influenced by
reverse diffusion of the solvent, and actually measure an average of the mass diffusion
coefficients, Di j , weighted by the equilibrium concentrations of the solvent, x1, and solute, x2,
defined by

Dtot = x2
1 D11 + x2

2 D22.

The three methods are required to provide upper and lower estimates for the mixed
solvent–solute diffusion coefficient, which is not directly accessible from the experimental data,
and demonstrate agreement with the experiment via Dtot.

1. Introduction

Our goal is to seek an independent theoretical verification of
the high quality experimental estimates of the mass diffusion
coefficient in a number of dilute molten metallic and metalloid
alloys performed by Smith et al [1] on the Russian Space
Station ‘MIR’ and the United States ‘Shuttle’. In low-
earth orbit, the gravitational forces are normally very small

and so the usual long capillary diffusion couple experiment
may be performed with a minimum of gravity-driven solute
transport. Whilst in orbit, the residual atmospheric ‘drag’
on the space vehicle is small (approximately 5 × 10−6g
where g is the terrestrial gravitational acceleration), however
the transitory short period changes in g, referred to as ‘g-
jitter’, caused by momentum changes within the space vehicle,
may be significant e.g. at times these may have magnitude
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Figure 1. Pb 1 wt% Au diffusion coefficient versus temperature.
QUESTS/QUELD-I without isolation mount, QUELD-II MIM with
isolation showing the significant difference in diffusion coefficients
with and without g-jitter. Both from Smith et al [1].

of 10−3g, and so cause significant solute transport and thus
inflation of the value of any diffusion coefficient (D) being
measured. The experimental work carried out on MIR
was performed with the aid of the Canadian Space Agency
microgravity isolation mount (MIM) to reduce the g-jitter
experienced by the sample and produced values of ‘D’ lower
than those obtained on the Shuttle for duplicate diffusion
couples. Figure 1 shows the QUELD-I shuttle results and
MIR based QUELD-II MIM results. Significant differences
are evident and indicate different fluid regimes are in effect
with and without g-jitter, and which are beyond the application
of linear stability analysis or error analysis based on small
perturbations to explain. In our earlier predictions, the value
of ‘D’ for gold in a Pb 1 wt% Au alloy diffusion couple,
Scott et al [2], molecular dynamics simulation was used
along with velocity autocorrelation techniques to estimate the
diffusion coefficient. The molecular dynamics results were
also used to provide some of the terms required in the Enskog
equation for the diffusion coefficients in the hard sphere
liquid [3] to make comparisons. However, a prerequisite for
realistic molecular dynamics predictions is the use of realistic
values of the interatomic potentials for the alloy system being
modelled. Unfortunately, good interatomic potentials are hard
to find in the literature and enormously labour intensive to
generate, often requiring detailed ab initio quantum mechanics
calculation guided by a comprehensive set of experimental
parameters [4, 5]. In view of this, alternative approaches to
the problem of predicting values of ‘D’ for any given alloy
system and temperature are presented here that do not require
interatomic potentials.

Consider a nonreacting liquid free of external forces at a
constant temperature T with number density ρ, which may
vary in time t and place r where r ∈ D a closed bounded
subset of R

3, so ρ = ρ(t, r), and having velocity v(t, r). Let
the liquid consist of N different species of atoms, denoted by
i and j , having number concentrations xi(t, r). Assume in
addition that momentum transport can be neglected. Then, the
hydrodynamic equations describing the liquid in section 54 [6],
reduce to conservation of mass and consist of the equation of

continuity:
∂tρ + ∇ · ρv = 0

and for each species i , 1 � i � N concentration equations:

∂t xi + ∇xi · v = −∇ · Ji

= −
N∑

j=1

∇ · (Di j∇x j ) (1)

where Di j are the mass diffusion coefficients, (mass
diffusivities), which, by the Onsanger reciprocity [7], satisfies
the symmetry Di j = D ji . In addition, to preserve total mass,
the total mass flux must be zero, so the species flux Ji satisfy

N∑

i=1

Ji = 0.

These mass diffusion coefficients are what is of interest here.
The basis of the estimates presented here is the Enskog

equation for the interspecies mass diffusion coefficients
Di j [3]. Based on [8] a brief derivation of the Enskog equation
follows. For now let the uniform liquid consist of N hard
sphere species with species i having an atom diameter σi ,
atom mass mi and number concentration xi . The interspecies
reduced mass is defined by μi j = mi m j/(mi + m j) and
interspecies diameters be σi j = (σi + σ j )/2. Let r denote
the distance between the centres of hard sphere atoms of type i
and j , the ‘interatomic distance’, then partial radial distribution
functions [9] are denoted by gi j(r) and have the following
pRDF property:

Let � be a disk of circular cross section with area
A and thickness dr and let an i -atom reside on
the axis of the disk at a distance r from the disk.
Then the expected number of j -atoms in the disk is
ρgi j(r)Adr .

The Enskog equation may be obtained from the Einstein
relation, derived from the Langevin equation for Brownian
motion, that expresses interspecies mass diffusion coefficients
as

Di j = kBT

ζi j
(2)

with Boltzmann constant kB and ζi j denoting the friction on
an i -atom due to nearby j -atoms. ζi j is determined by the
expected change in momentum due to j -atoms over a short
time interval τ and is given by

ζi j = 〈�p ·�p〉
2kBT τ

. (3)

Although this may not be appropriate for dense fluids, assume
there exist sufficiently small time intervals τ such that a j -
atom collides only once with the i -atom during τ . Due to
the conservation of linear momentum and kinetic energy, the
change in i -atom momentum due to the collision is

δpi j = 2μi j
(
v j − vi

) ·
(

r j − ri

‖r j − ri‖
)

with ri and r j being the positions of the i -atom and j -atom
at collision. The total change of momentum is given by the

2
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sum of momentum changes over the j -atoms that reside in
a collision volume that consists of a cylinder having length
τ‖v j − vi‖ and circular cross section with area πσ 2

i j , with the
i -atom on the axis at the collision end. For τ sufficiently small,
the pRDF property gives the expected number of j -atoms in
the collision volume as the volume ×ρgi j(σi j ). Summing over
the expected j -atoms, the expected total change of momentum
is

〈�p ·�p〉 = 4μ2
i j

((
v j − vi

) ·
(

r j − ri

‖r j − ri‖
))2

× πσ 2
i jτ‖v j − vi‖ρgi j(σi j ) = 4μ2

i j‖v j − vi‖2‖ri j‖2

× cos(θi j)
2πσ 2

i jτ‖v j − vi‖ρgi j (σi j) (4)

with θi j being the acute angle made by the unit vector ri j =
(r j −ri )/‖r j −ri‖ and the axis of the cylinder. The sum over j -
atoms in the collision cylinder can be expressed by integrating
the unit vector over its intersection with the collision cylinder,
which requires that 0 � θ � π/2. Introducing an orthogonal
basis {e1, e2, e3}, with e3 along the axis of the collision
cylinder, and angle ψ extending around the circumference
of the collision cylinder so that −π � ψ � π , the unit
vector may then be expressed as ri j = cos(ψ) sin(θ)e1 +
sin(ψ) sin(θ)e2 + cos(θ)e3 and so (4) becomes

〈�p ·�p〉 = 4πτρμ2
i jσ

2
i j gi j(σi j)

×
∫ π

−π

∫ π
2

0
‖v j − vi‖3(cos(ψ)2 sin(θ)2

+ sin(ψ)2 sin(θ)2 + cos(θ)2) cos(θ)2 dθ dψ. (5)

To complete the expression it is necessary to take the
expectation over the atom velocities vi and v j using
the equilibrium probability density, and remembering that
although there is no restriction on vi , for each vi , v j is restricted
so a collision is possible. Substitution of the completed form
of (5) and substitution of (3) into (2) results in the Enskog
equation for the mass diffusion coefficients:

Di j = 3

8ρgi j(σi j )σ
2
i j

(
kBT

2πμi j

) 1
2

. (6)

Most of the variables in (6) are obvious, with the species radii,
σi , being the unknown, that must be determined. The hard
sphere partial radial distribution functions, gi j(r) must also be
approximated.

However other equations for the diffusion coefficients are
possible. In terms of the velocity correlation with respect to
the equilibrium distribution the Green–Kubo equation for the
mass diffusion coefficient of a single species liquid is

D = 1
3

∫ ∞

0
〈v(t) · v(0)〉 dt . (7)

When the coupled diffusion system is viewed as diffusion
within one mixed liquid, a total mass diffusion coefficient, Dtot,
is defined by

Dtot = 1

3

∫ ∞

0

〈(
N∑

i=1

xivi (t) ·
N∑

j=1

x jv j (0)

)〉
dt

=
N∑

i=1

x2
i Dii (8)

where for dilute alloys with xi is small for 2 � i � N

Dtot ≈ D11.

In the following evaluation of (6) is required, and to do
so the hard sphere partial radial distribution functions, gi j(r)
must be approximated. The Percus–Yevick approximation
of gi j(r) [10], is fairly easy to implement, however
it is not thermodynamically consistent. More recently
the rational function approximation for the partial radial
distribution functions, presented in [11, 12], and which is
thermodynamically consistent, has proved to be effective.
Following [13], a brief introduction to the rational function
approximation is given.

For n = 1, 2, 3 let

ξn = ρ

N∑

i=1

xiσ
n
i (9)

and define the volume packing fraction by

η = π

6
ξ3. (10)

The partial radial distribution function at the interspecies
diameters are given by the GHLL expression, see [13],

gi j(σi j) = 1

2π

(
λ+ 1

2
λ′ σiσ j

σi j
+ 1

18

λ′2

λ

σ 2
i σ

2
j

σ 2
i j

)
(11)

with λ = 2π/(1 − η) and λ′ = π2ξ2/(1 − η)2. For a
multispecies hard sphere fluid, the equation of state is given
by

p = ρkBT

(
1 + 2

3
πρ�N

i=1�
N
j=1xi x jσ

3
i j gi j(σi j )

)

with p denoting pressure and kB Boltzmann’s constant.
Substitution of (11) into this equation gives the BMCSL,
see [13], equation of state [13]. The isothermal susceptibility
χ satisfies

1

χ
= 1

kBT

(
∂p

∂ρ

)

T

.

Substitution of the BMCSL into this equation gives the
following equation for the isothermal susceptibility

χ = ρ

ρ

(1−η)2 + π ζ1ζ2

(1−η)3 + π2

36 ζ
3
2

9−4η+η2

(1−η)4
. (12)

As long as (11) and (12) are used in the following development,
the hard sphere fluid is thermodynamically consistent.

Now let Gi j(s) be defined by the Laplace transform

Gi j(s) =
∫ ∞

0
e−sr gi j(r)r dr

so gi j is obtained from an inverse Laplace transform of Gi j ,
and a computational form is sought for Gi j . From the bounded
properties of gi j and isothermal susceptibility, it can be shown

3



J. Phys.: Condens. Matter 21 (2009) 335104 P J Scott and R W Smith

Table 1. Input variables for Mathematica programs to evaluate the rational function approximation of the partial radial distribution function.

Mathematica variable Meaning Remark

nco number of species Ns

ratio {1, σ2/σ1, . . . , σnco/σ1} Vector of nondimensional atom diameters
con {x1, . . . , xnco} Vector of species number concentrations
eeta π

6 ρσ
3
1

∑nco
i=1 xi (

σi
σ1
)3 Nondimensional packing fraction η∗

that Gi j has the form

Gi j(s) = e−sσi j

2πs2

[
L(s) · [(1 + αs)ł − A(s)]−1

]
i j

with the N × N identity matrix ł and an, as yet unknown,
positive parameter α. The components of matrix L(s) are
expressed as

Li j(s) = L0
i j + L1

i j s + L2
i j s

2

and matrix A(s) is expressed as

A(s) =
∞∑

n=0

Ansn (13)

with the components of matrix An expressed in terms of the
components of L(s) as

An
i j = (−1)nρxi

×
(

σ n+3
i

(n + 3)! L0
i j − σ n+2

i

(n + 2)! L1
i j + σ n+1

i

(n + 1)! L2
i j

)

and

L0
i j = λ+ λ′σi + 2λ′α − λρ

N∑

k=1

xkσk L2
k j

L1
i j = λσi j + 1

2λ
′σiσ j + (λ+ λ′σi )α − 1

2λρσi

N∑

k=1

xkσk L2
k j

L2
i j = 2πσi j gi j(σi j )α.

(14)
After determining a suitable finite upper limit in (13), and
the substitution of (11) in (14), this becomes a complete
specification of Gi j(s) when α is given. To find α,
the Ornstein–Zernike equation [9], is used to express the
isothermal susceptibility as

1

χ
=

∞∑

i=1

∞∑

j=1

√
xi x j

[
ł + ĥ(0)

]−1

i j
(15)

with the components of ĥ(0) given by

ĥi j(0) = −4πρ
√

xi x j

[
B1 · [

ł − A0
]−1

]

i j
(16)

and the components of B1 are given by

B1
i j =

N∑

k=1

A3
k j +

N∑

k=1

σik A2
k j −

N∑

k=1

( 1
2σ

2
ik + H 0

ik)(αδk j − A1
k j)

−
N∑

k=1

( 1
6σ

3
ik + σik H 0

ik)(δk j − A0
k j) (17)

H 0
i j = [B0 · [ł − A0]−1]i j (18)

B0
i j = σi j gi j(σi j)α +

N∑

k=1

A2
k j −

N∑

k=1

σik(αδk j − A1
k j)

−
N∑

k=1

1
2σ

2
ik(δk j − A0

k j). (19)

Substitution of (11) and (12) in (15) and the use of (16)–(19),
results in an equation for α. This equation for α is a ratio
of two polynomials of degree 2N , and hence is a rational
function approximation. For physical reasons the smallest
real root is chosen. When both α and the matrix L0 are
set to zero the above procedure reduces to the Percus–Yevick
approximation [10].

Since parts of the calculation involve symbolic algebra,
and are not purely numerical, the present code for the
partial radial distribution functions is only available in
Mathematica [14]. To use these programs, the variables listed
in table 1 must be used. To demonstrate their results, Yuste
et al [13], nondimensionalized the interatomic distance r by
dividing by the diameter of the first species, σ1, usually chosen
to be the largest diameter. To maintain consistency and enable
comparison with these results, the same nondimensionalization
was used here, hence the definition of ratio in table 1. If
the physical density is ρ, the nondimensional density becomes
ρσ 3

1 . In many studies of abstract hard sphere fluids, the volume
fraction η is used as an invariant parameter. Here, the value of
η for a specific alloy, Pb 1 wt% Au, must be preserved, hence
the definition of η∗.

Mathematica [15], has also been used here for all
additional calculations.

2. Estimation of hard sphere equivalent atomic
diameters

Experimental data about the density of liquid lead is available
in [16]. From this a linear relation for the number density,
N Å

−3
of the Pb 1 wt% Au liquid alloy in terms of temperature

T K was devised:

ρ(T ) = 0.032 347 − 0.4069 × 10−5(T − 273). (20)

For a one species liquid, the static structure factor is
obtained from the radial distribution function by a Fourier sine
transform:

S11(q) = 1 + 4πρ
∫ ∞

0
(g11(r)− 1)

sin(qr)

q
r dr (21)

where q has units Å
−1

. Since g11(r) → 1 fairly quickly
as r increases, a finite integral with upper limit 30 Å is

4
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Figure 2. For T = 602 K gex Kaplow et al [17] and optimal g11 for
Pb solvent versus interatomic distance r Å. The optimal fits at higher
temperatures are similar. Since, for hard sphere liquid g11 has a sharp
peak at the atom diameter, it always tends to overshoot the rounded
first peak of the experimental data. However the distribution of
neighbouring atoms, given by the dampened waveform, is in good
agreement with gex.

usually sufficient. The static structure factor can be measured
experimentally by neutron scattering [9], during which the
scattering intensity [17] determines q . For Pb, is available
at temperatures over the liquid temperature range. For the
following temperatures, experimental values of the static
structure factor, Sex(q) and the radial distribution function,
gex(r), are available for pure Pb: 602 K in [17], 613 K in [18],
623 K in [19], 643 K in [20], 660 K in [21], 723 K in [19],
823 K in [19], 863 K in [20], 873 K in [18], 1053 K in [18],
and 1163 K in [20].

Values for the isothermal compressibility of liquid lead are
found in [22] and [23]. From this the following expression
for the isothermal susceptibility as a linear function of the
temperature can be derived:

χex(T ) = −0.011 043 395 + 0.323 0992 × 10−4T .

At any temperature, for a binary alloy (12), depends on the
two hard sphere diameters σ1 and σ2, and the isothermal
susceptibility is expressed as χ(ρ(T ), σ1, σ2). Then

χex(T ) = χ(ρ(T ), σ1, σ2) (22)

gives a relation for σ1 and σ2.

3. Methods for mass diffusion coefficient estimation

A two step method for estimating σ1 and σ2 by using the static
structure factor and isothermal compressibility now follows.

Step one for a dilute alloy, one assumes g11 and S11 of
the solvent in the alloy are the same as gex and Sex of the
pure solvent. For given experimental data, one may find the
hard sphere equivalent atomic diameter of the solvent, σ1, by
minimizing the functional

M(σ1) =
(
wRDF

∫ ∞

0
(gex(r)− g11(r))

2 dr

+ wSSF

∫ ∞

0
(Sex(q)− S11(q))

2 dq

) 1
2

(23)

Figure 3. For T = 602 K Sex Kaplow et al [17] and optimal S11 for
Pb solvent. The optimal fits at higher temperatures are similar.

Table 2. Optimal σ1 over convex weights wRDF + wSSF = 1 showing
only a small change in σ1 with different weights.

wRDF wSSF σ1 (Å)

0.1 0.9 3.032 38
0.2 0.8 3.000 23
0.3 0.7 3.000 05
0.4 0.6 3.000 03
0.5 0.5 3.000 02
0.6 0.4 3.000 02
0.7 0.3 3.000 02
0.8 0.2 2.993 92
0.9 0.1 2.993 92

with g11 given by the rational function approximation. With
regard to table 1, the inputs are nco = 1, ratio = {1},
con = {1}, and eeta = π

6 ρσ
3
1 , with σ1 being the candidate

value for the solvent atom hard sphere diameter. S11 is
given by Fourier sine transform (21). As indicated previously,
finite upper limits are sufficient for both integrals. In theory,
gi j and Si j are uniquely related via the Fourier transform
so it should be sufficient to either optimally fit g11 or S11.
However, the resolution of Sex and gex varied, in some
cases consisting of tables of values to a small number of
decimal places, and sometimes requiring digitizing graphs,
which in itself introduces some mechanical and subjective
errors. Also, oscillating residual error often occurred in gex

at small radii, and negative values of Sex occurred at small
values of q . The user of these data is required to reach a
subjective judgement about how to deal with these effects. The
above simultaneous optimization was chosen to reduce effects
occurring independently in gex and or Sex. The weights wRDF

and wSSF were added to determine how changes in the relative
importance of the two terms in the cost function changes the
optimal value of σ1. Table 2 shows the values of optimal σ1

over a convex combination of weights.
The optimal σ1 changes only slightly with different

weights, so the procedure is stable. In the following equal
weights were chosen so wRDF = wSSF = 1. For T =
602 K, the resulting solution with equal weights is exhibited
in figures 2 and 3.

From figure 2 it is clear that the optimal value of
the solvent hard sphere diameter is approximately σ1 =
3.032 24 Å.

5
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Figure 4. Using the solvent diameter found in step one, the
intersection of the experimental isothermal susceptibility value
χex(T = 602 K) with the computed isothermal susceptibility
χ(ρ(T = 602 K), σ1 = 3.0322, σ2) determines the solvent diameter
σ2 ≈ 9.5 Å.

With σ1 given by step one (22), is a relation for σ2. Step
two consists of solving this relation subject to the constraints
that σ2 must remain real and positive. Figure 4 exhibits this
step for T = 602 K. The numerical solution is σ2 = 9.474 Å.

Substituting σ1 = 3.032 24 Å and σ2 = 9.474 Å gives
g12(σ12) = 13.4041, with η = 0.5931 and substitution into (6)
gives at T = 602 K the solute mass diffusion coefficient
D12 = 0.0205 Å

2
ps−1. Method A has been carried out at each

of the temperatures listed above. The results are exhibited in
table 3.

The radial distribution function nearest peak distance for
liquid Pb near the melting temperature, listed in table II of
Protopapas et al [24], is dPb = 3.39 Å. This suggests the values
of σ1 listed in table 3, found in step one, are underestimations.
The large values of σ2 in the table, may result from satisfying
the isothermal susceptibility relation (22), while compensating
for a consistent error in the values of σ1 supplied by step one.
This may be further amplified since the solute concentration
is low and the compensating effect is achieved through a
comparatively small number of atoms.

To develop additional methods assume the concentration
of the solute is sufficiently low that the size of the solute atoms
has no role. Consequently both types of atoms have the same
effective hard sphere diameter. In method B the equal radii are
substituted into (22) and (23) is not required. In method C the
equal radii are substituted into (23), and (22) is not required.
Notice that, with equal radii, gi j(σi j ) given by (11) are the
same, so with solvent Pb and solute Au having almost identical
atomic weight, the diffusion coefficients Di j given by (6) are
almost identical. So, for each of methods B and C, only one
diffusion coefficient is considered: DB ≡ DB

12 and DC ≡ DC
12.

A fourth method, method D, consists of simultaneously
solving (23) and (22). Briefly, for a candidate value of σ1

a value of σ2 is found by solving (22) and (23) is evaluated
with g11 given by inputs: nco = 2, ratio = {1, σ2/σ1},
con = {x1, x2}, and eeta = π

6 ρσ
3
1 (x1 + x2(σ2/σ1)

3). At
T = 602 K the resulting optimal values of σ1 and σ1 give the
comparisons with experimental data shown in figures 5 and 6.
Method D does not satisfy the minimization of (23) as well
as method A, and is not considered further. The methods are
summarized in table 4.

Figure 5. Method D at T = 602 K gex Kaplow et al [17] and optimal
g11 for Pb solvent versus interatomic distance r Å. Clearly not as
good as method 1 shown in figure 2.

Figure 6. Method D static structure factor comparison. Clearly not
as good as method 1 shown in figure 3.

4. Results for Pb 1 wt% Au liquid

All three methods were applied to the Pb 1 wt% Au alloy over
its liquid temperature range. Molecular dynamic simulations
of single species hard sphere liquids indicate that starting at
volume fraction η = 0.56 a transition into a glassy solid
begins, which is complete at η = 0.64 [13]. Figure 7 shows the
packing fraction remains within the hard sphere liquid range
η � 5.6 throughout most of the temperature range for all
three methods. Since the solvent and solute radii are equal in
method B, the transition criteria should apply, and indicates
transitional behaviour for T � 625 K, which is consistent
with the melting temperature of Pb 1 wt% Au, Tm ≈ 598 K.
The large solute diameter given by method A results in high
values of η. However, this also means the transition criteria is
less appropriate, and the upper transition limit, T = 720 K,
is an over estimate. Figure 8 shows that methods B and C
give almost the same effective hard sphere diameters, although
methods A and B give almost the same packing fraction.
Figure 9 shows that the partial radial distribution function of
method B is approximately mid-way between those of the other
two methods.

Since the values of η in figure 7 suggest method B should
give results similar to method A, the distinction between the

6
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Table 3. Results for method A at temperatures were Sex is available.

T (K) σ1 (Å) σ2 (Å) ηN g12(σ12) DA
11 DA

12 DA
22 (Å

2
ps−1)

602 3.0322 9.474 0.5931 13.4041 0.1334 0.0205 0.0035
613 3.0699 8.914 0.5849 12.9148 0.1338 0.0234 0.0045
623 3.0326 9.326 0.5849 12.7198 0.1420 0.0225 0.0040
643 3.0570 8.873 0.5751 12.0679 0.1473 0.0260 0.0051
660 3.0368 9.031 0.5713 11.6916 0.1567 0.0266 0.0050
723 3.0378 8.636 0.5514 10.3451 0.1824 0.0339 0.0070
823 3.0393 8.059 0.5247 8.8192 0.2234 0.0476 0.0113
863 3.0052 8.408 0.5191 8.4678 0.2467 0.0482 0.0106
873 3.0079 8.322 0.5165 8.3527 0.2504 0.0500 0.0112

1053 2.9880 7.943 0.4837 6.9244 0.3340 0.0729 0.0180
1163 2.9760 7.800 0.4673 6.3269 0.3877 0.0877 0.0225

Table 4. Summary of the methods.

Name Step one Step two Diffusion coefficients

A σ1 �= σ2 σ1 minimizes (23) σ2 satisfies (22) given σ1 DA
11, DA

12, DA
22, DA

tot
B σ1 = σ2 Satisfy (22) DB

C σ1 = σ2 Minimize (23) DC

D σ1 �= σ2 Minimize (23) with (22)

Figure 7. Packing fraction η of the three methods versus
temperature. For method A and C there are results only at
temperatures for which gex and Sex are available, hence the square
marker points. Method A and C markers have been connected with a
linear or quadratic least squares fit, whichever was most appropriate,
indicated by dashed lines. Since the experimental isothermal
susceptibility is available at all temperatures, method B was applied
using a temperature increment of �T = 10 K, and the result is
depicted with a solid curve without markers. Although the diameter
of the Au hard sphere solute atoms for method A is much larger than
for method B, the packing fractions are almost the same. When equal
diameters are assumed in method C, the optimal fitting to gex and Sex

results in a smaller packing fraction than method A.

three methods brought out by the partial radial distribution
function in figure 9 is central in the success of method B, and
indicates the importance of an accurate estimate of the partial
radial distribution function.

Before discussing the mass diffusion coefficients, recall
the experimental results were obtained from capillary devices
in which solute diffuses from an alloy plug into a column of
pure solvent. A proportional schematic of the Pb 1 wt% Au
capillary system is shown in figure 10.

Although the solute concentration is low in the alloy
plug, there is still some reverse diffusion of solvent into the

Figure 8. Solvent hard sphere radius σ2 of the three methods versus
temperature. Here method A and B differ significantly. The close
agreement of method B and C indicate that for hard sphere models
the isothermal susceptibility provides almost as much information as
the entire static structure factor.

plug. This phenomenon was observed experimentally during
solid diffusion by Kirkaldy [25] who noted movement of the
interface between the plug and solvent, and in the analysis of
the final concentration profile, introduced the final interface
location as an additional variable to be determined as part of
the estimation of the diffusion coefficient. Dtot defined by (8)
is required to examine the results for the Pb 1 wt% Au capillary
experiment.

Figure 11 shows the mass diffusion coefficient computed
for each method compared with the experimental results in
Smith et al [1] and the results from molecular dynamic MD
simulation in Scott et al [2]. Note that DA

11, DA
tot, and DB

are in good agreement with the experimental results, which
is consistent with the derivation of (8) and accompanying
discussion. The close agreement of DC with the MD estimates
suggests this is an estimate of the mixed solvent–solute
diffusion coefficient D12. DA

12 and DA
22 are quite low because

7
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Figure 9. g12(σ12) of the three methods versus temperature. Method
B identifies a balance between methods A and C which indicates the
importance of the rational function approximation.

of the large solute diameter, σ2, found by method A, however
these serve as lower estimates.

Since only Dtot is directly measurable from the capillary
experiment, while the other diffusion coefficients are
inaccessible, it is clear that all three methods are required.
In general, for capillary experiments in liquids, models for
the individual diffusion coefficients must be provided, and
the success of such models is determined by how well they
estimate Dtot.

A large number of microgravity binary alloy diffusion ex-
periments were performed with a 1 wt% solute concentration.
However some consideration of the effect of concentration in
the model results is desirable. First, for method B with σ1 = σ2

and x1 + x2 = 1, equations (9) and (10) remain constant
regardless of changes in concentration, so (12) is constant and
the solution of (22) for the radii is constant. Consequently,
the value of g12(σ12) given by (11), is constant and the value
of the diffusion coefficient given by (6) remains constant.
Method B indicates no change in the diffusion coefficient as the
concentrations change subject to x1 + x2 = 1. Since method C
makes a one species evaluation of g11 with con = {1} it cannot
indicate changes as the concentrations change. Since method D
simultaneously varies both radii it might indicate variations due
to changes of concentration, although at low concentrations it
does not perform as well as method 1. Method 1 was used at
T = 602 K with the solute number concentration, x2 = xAu in
the range 0.01 � xAu � 0.09 The results became physically
meaningless for xAu > 0.06, but below this limit they are
shown in figures 12 and 13. Both figures exhibit linear rates
of change in hard sphere radii and partial diffusion coefficients
up to xAu ≈ 0.02, as are to be expected with small differences

Figure 11. Diffusion coefficients of the three methods versus
temperature compared with QUELD-II MIM experimental results
from Smith et al [1] and estimates from molecular dynamic MD
simulation from Scott et al [2]. The close agreement of DA

11, DA
tot, and

DB with the experimental results suggests the experiment is
influenced by reverse solvent diffusion and the capillary experiment
actually measures Dtot. Note the close agreement of DC with the MD
estimates. DA

12 and DA
22 are quite low because of the large solute

diameter, σ2, found by method A.

in xAu. However, above that value, inconsistent changes
occur. Hence method A is limited to low solute number
concentrations, i.e. less than 0.02. This also suggests that, even
at fairly low solute number concentrations, information about
the alloy isothermal compressibility and static structure factor,
as well as, a simultaneous method such as method D, may be
required to estimate how the mass diffusion coefficients vary
with number concentration.

5. Conclusions

Three methods of obtaining estimates for the mass diffusion
coefficient in dilute binary liquid alloys based on the rational
function approximation of the partial radial distribution
functions of the alloy, in [11, 12], have been described.
One method sequentially uses static structure factor data
and data about the isothermal compressibility of the solvent.
The other two methods use either the static structure factor
or the isothermal compressibility independently. A fourth
method, method D, that simultaneously uses both the static
structure factor and isothermal compressibility has also been
discussed briefly. The stability of the first method with respect
to variable weights in its optimization procedure has been
demonstrated. It has been shown that two of the methods
give no information about how mass diffusion coefficients vary

Figure 10. Proportional schematic of Pb 1 wt% Au capillary system.
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Figure 12. For method A hard sphere radii σ1 and σ2 versus solute
number concentration x2 = xAu. As xAu increases a linear change in
σ2 is observed up to xAu ≈ .02. The lower rate of decrease of σ2 for
xAu > .02 while σ1 continues to decrease at the same rate suggests
the onset of some numerical inconsistency.

Figure 13. For method A the partial diffusion coefficients DA
11, DA

12
and DA

22 versus solute number concentration x2 = xAu. As xAu

increases a linear change in DA
11 is observed up to xAu ≈ .02. The

large rate of increase of DA
11 for xAu > .02 while DA

12 and DA
22

continue to increase at the same rates suggests the onset of some
numerical inconsistency.

with solute concentration, while the first method appears to
be reliable only at solute atom number concentrations below
0.02 wt%.

A total mass diffusion coefficient, Dtot, based on weighing
the solvent and solute velocity fields by their equilibrium atom
number concentrations has been introduced in order to discuss
the results of capillary type diffusion experiments.

The methods have been applied to Pb 1 wt% Au
liquid alloy and compared with high quality microgravity
capillary experiment results using the Canadian Space Agency
Microgravity Isolation Mount, Smith et al [1], and velocity
autocorrelation estimates based on molecular dynamic MD
simulation, Scott et al [2]. Via the total mass diffusion

coefficient, Dtot, the three methods compare well with the
experimental results. Comparison with the MD results
suggests one of the methods gives a good estimate of the mixed
solvent–solute diffusion coefficient, D12. Lower estimates are
also provided.

The results suggest that in general, since only the total
diffusion coefficient, Dtot, is directly available from capillary
experiments, several theoretical methods to estimate the other
diffusion coefficients, and assessed on their ability to reproduce
Dtot are required. When static structure factor data and
data about the isothermal compressibility are available, these
methods can be applied to other microgravity experimental
results.
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